Hydrologic cycle: past, present and future

Observed climatology & basic physics

— |TCZs, subtropical dry zones, midlatitude storm
tracks and (seasonally) monsoons

» Basic Dynamics

« |TCZ response to forcing: LGM, mid-
Holocene, volcanoes, increased CO2

« Expected changes (circa 2100) due to
iINCreasing greenhouse gases
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Annual mean precipitation
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Hadley circulation supplies the water
vapor that falls as precipitation in the deep
tropics (ie, in the ITCZs)

Basic structures are found in aquaplanet models w/ slab oceans
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Surface Ocean Salinity reflects E-P

Transport by
atmosphere and ocean
circulation also
contribute

E-P, {qV} irrotational

Sea-surface salinity [PSU]

Wallace et al in prep



Land budget

« Storms deposit water over continents and rivers
return it to the oceans
— Some stored in groundwater, glaciers and ice sheets

« Precipitation is greater than one would expect from
vapor import due to recycling (ET). Recycling
accounts for

— Recycling accounts from ~10% (~50%) of annual precip on
a regional (continental) scale
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» Basic Dynamics



Basic Dynamics

Basic zonal average features are found
in models without orography, land or
ocean heat transport:

— [TCZs, subtropical dry zones, midlatitude
storm tracks, and even monsoons

— Strengths and specific latitudes found
depend on Earth diameter & rotation rate,
greenhouse gas concentration (within a
factor of 10 or so), and distance from the

Sun

Precipitation amount in ITCZs largely
proportional to strength of Hadley Cell,
which regulates the rate water vapor is
delivered from the subtropics to the
~equator

— Hadley cell strength is primarily controlled
by the intensity of the midlatitude storm
tracks (dynamic) and secondarily on the
mean temperature (thermodynamic) of the

planet

« Location of ITCZ determined by

Pacific ITCZ: Andes, continental geometry
(not coastal upwelling!)

— Atlantic ITCZ: presumably continental

geometry

A minor process: hemispheric asymmetry
in heat transport

« Location/strength of midlatitude storm
tracks largely set by Stren%th and

location of the maximum

atitudinal

gradient

« Role of continents

Resist evaporation (vth forced changes in
temp are greater over land than ocean)

Land: Breaks up the storm track

Orography: limits how much water vapor is
delivered from one ocean to the next

« Matters greatly for the ocean overturning
circulation



Hydrologic cycle: past, present and future

ITCZ response to forcing: LGM, mid-
Holocene, volcanoes, increased CO2



When is the response to forcing
described by hemispheric energetics?

Change in character of ITCZ
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Atwood, A.R., A. Donohoe, D.S. Battisti, X. Liu, and F.S.R. Pausata, 2020: "Robust longitudinally-variable responses of the ITCZ to a
myriad of climate forcings" Geophys. Res. Letts. DOl 10.1029/2020GL088833.



https://atmos.uw.edu/~david/Atwood_etal_2020.pdf

When is the response to forcing
described by hemispheric energetics?

Forcings with large hemispheric
asymmetry (e.g., volcanic forcing,
meltwater forcing, and the LGM)
give rise to robust zonal mean
shifts of the ITCZ

However, the direction and
magnitude of the shift vary even
more strongly in longitude than in
the zonal mean

Forcings with weak hemispheric
asymmetry (CO2 anad
mid-Holocene) give rise to zonal
mean shifts that are small or
absent

But the ITCZ does shift regionally in
coherent ways ...

Atwood et al 2020, GRL DOI 10.1029/2020GL088833
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When is the response to forcing

described by hemispheric energetics? Change in latitude of ITCZ
»  Forcings with large hemispheric (multimodel mean; multimodel zonal mean; whiskers = +10)
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Hydrologic cycle: past, present and future

Expected changes (circa 2100) due to
iINCreasing greenhouse gases



Changes in hyarologic cycle circa ~2100 (55P4.5)

SSP4.5: 1.7C(1.2,2.6) global warming from 2010; 2.8C warming since PI

Increased atmospheric water vapor: 7%
per degree C

—  (Clausius-Clapeyron Egn.

Increased global precipitation:

—  ~2% per degree C globally (4.5% over
midlatitude land)

In tropics: wet regions get wetter (ITC/Zs,
most monsoons), dry get drier (subtropical
dry zones)

Mean pI’ECIBItatIOﬂ increases in most
monsoons by 2-8% (+5%)
— Slight decrease in NAM and equatorial Americas

Volatility in precipitation and drought more
markedythan mean changes
— Increased heavy precipitation events
— Increasing frequency and severity of droughts
— Increase in frequency of Cat4&5 TCs

A Annual Precip
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AR6 WG1 draft report

n.b. it is a low bar to achieve “high model agreement”



Changes in hyadrologic cycle circa ~2100 (55P4.5)

SSP4.5: 1.7C(1.2,2.6) global warming from 2010; 2.8C warming since PI

In high latitudes, more Brecipitation (more
water vapor organized by ~same strength
storms)

— Increased snow where cold enough

— But decrease in snow area extent in NH

Increased evaportranspiration in most places

Net result: surface ocean gets saltier in tropics
(where AE > AP) and fresher in high latitudes
(where AP > AE)

— Positive feedbacks associated with slowing ocean
overturning circulation

Over land, specific humidity increases but
relative humidity decreases

— Results inincreased evapotranspiration that slightly
outpaces increased precipitation

— In Southern Europe and South Africa: less .
precipitation & more evaporation = acute reduction
In soil moisture

Decrease in arctic sea ice extent and thickness
—  15% (0, 60%) of Sept ice cover in 1950

Decrease in NH spring snow cover (~-25+10%)

n.b. it is a low bar to achieve “high model agreement”
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Little change in projections in past 15 years



